Featured Post

80186 Microprocessors: Introduction and Architecture

Hello friends, today we are going to discuss the 80186 microprocessor with integrated peripherals. The Intel 80186 is an improved version of the 8086 microprocessor. 80186 is a 16-bit microprocessor with a 16-bit data bus and a 20-bit address bus. It has a programmable peripheral device integrated into the same package. The instruction set of the 80186 is a superset of the instruction set of the 8086. The term super-set means that all of the 8086 instructions will execute properly on an 80186, but the 80186 has a few additional instructions. The following figure shows the block diagram and pin diagram of 80186. The CPU is divided into seven independent functional parts. 80186 internal block diagram  80186 68-pins pin diagram  Functional parts of 80186 Microprocessor The Bus Interface Unit (BIU) Execution Unit (EU) Clock Generator Programmable interrupt controller Programmable Chip Select Unit (CSU) Programmable DMA Unit Programmable counter/timers The Bus Interface Unit ...

Hexadecimal Number System

Hexadecimal or base 16 number systems having 16 possible symbols, the decimal symbols 0 through 9 are used up and the letters A through F for values 10 through 15. This number system is often called Hex code.


The digit values for hexadecimal and symbols for hex code is as follows in fig. (a) and fig. (b) resp.
                        A         E          6          .           7          6
                        162       161       160                         16-1      16-2
Hex symbols is as follows
                        Decimal           Hex
0                                            0
1                                            1
2                                            2
3                                            3
4                                            4
5                                            5
6                                            6
7                                            7
8                                            8
9                                            9
10                                        A
11                                        B
12                                        C
13                                        D
14                                        E
15                                        F

Conversion from Binary Number system  to Hex-decimal number system

1.      Write down binary number separately
2.      Mark off the binary digits in groups of four from right to left.
3.      Each group of four binary digits is equal to one Hex digit.
4.       Each hex digit is equal to four binary digits.
Example1:  (101101110001)2 = (?)16 or Hex
            Binary:                        1011    0111    0001
            Hex                 B         7          1

Hence        (101101110001)2 = (B71)16 or Hex

Example1:  (110110110110)2 = (?)16 or Hex
            Binary:                        1101    1011    0110
            Hex                 D         B         6

Hence        (101101110001)2 = (DB6)16 or Hex

Conversion from Hex to Binary

Example: (ADE6) H = (?)2
        Hex:    A         D         E         6
Binary:     1010    1101    1110    0110
And Hence            (ADE6)H = (1010110111100110)2

Conversion from octal to hex and vice versa

To convert from octal to hex code, the easiest way is to write the binary equivalent of the octal and then convert the binary digits, four at a time, into the appropriate hex digits. Reverse the procedure to get from hex to octal.

Example 1: (537)8 = (?)H
                        Octal:              5          3          7
                        Binary:                        101      011      111
                                                0001    0101    1111
                        Hex:                1          5          F
                        And hence (537)8 = (15F) H

      Example 2: (D6) H = (?)8
                        Hex:                D         6
                        Binary:                        1101    0110
                                                011      010      110
                        Octal:              3          2          6
                        And hence (D6) H = (326)8

Conversion from Decimal to Hexadecimal and Vice Versa


1.      Divide the decimal number by 16
2.      Keep remainder and quotient aside.
3.      Again Divide this quotient by 16 and keep remainder and quotient aside.
4.      Repeat this procedure until the quotient reaches zero.
5.      The column of remainders will be the hex equivalent of the given decimal number.
6.      The MSB is on the bottom of the column.
7.      The LSB is on the top of the column.

Example 1: (227)10 = (?)H
                                    14        3
             Hex code:        E          3
Hence (227)10 = (E3)H

            Example 2: (DB4)= (?)10
                                Hex Code:       D         B         4
                                                13        11        4         
                                    = (13*162) + (11*161) + (4*160)
                                    =(13 * 256) + (11 *16) + (4 *1)
= 3328 + 176 + 4
=  3508
            And hence (DB4)= (3508)10

Do you like my post? Please like, share, don't forget to leave the comments. Do you like my post please like, share, don't forget to leave the comments.

Comments